
 
Chem 542 

Homework for Part 7: molecule-light interaction 
 
1. Based on the Feynman diagram discussed in lecture, and the energy level diagram 

discussed for DFWM, draw two of the Feynman diagrams for this process, carefully 
labeling the left and right hand states of the density matrix. 

 
2. From the correlation function derived in lecture, derive the correlation function in the form 

shown below by choosing a diagonal density matrix ρ = exp[-Ei/kT]/Q.  Then, using the 
general formulas for the absorption intensity in terms of P(1) = χ(1) E given in section 12 of 
the notes, show that the absorbed intensity I is proportional to ∫dt exp[-iωt] C(t), where C(t) 
is the dipole-dipole autocorrelation function 

     𝐶(𝑡)~𝑇𝑟 𝑒)*+,-//0𝜇(𝑡)𝜇 . 
 This is the same formula we derived at the beginning of the course for one-photon 

perturbation theory, showing the relationship between the generalized nonlinear correlation 
functions of chapter 12 and the simple linear case discussed at the beginning of the course. 
The relationship provides a convenient relation of a linear absorption spectrum to the 
dynamics of molecular motion (e.g. rotational dephasing of dipoles in solution). 

 
 
3. Consider the dipole autocorrelation function for a collection of vibrating diatomic 

molecules at some temperature T (assuming the harmonic oscillator approximation and 
neglecting rotational effects).  The transition dipole term in C(t) of importance in this case 
is  

 
   <v|µ' Δr |v±1><v±1|µ' Δr(t) |v>, where µ' = ∂µ/∂r |re, Δr = r – re, 
 
 and Δr(t) = e+iHt/! Δr e-iHt/!  is the Heisenberg position operator. 
 
  a. Rather than performing the full quantum-mechanical trace over exp[-E0/kT]/Q |µ’|2 Δr Δr(t) 

to get C(t), consider a classical approximation in terms of action-angle variables, with the 
Schrödinger and Heisenberg operators replaced by classical variables Δr(t=0) and Δr(t), 
where  

     Δr(t) = Δrmax  cos(ω0t), 
 ω0 being the vibrational frequency of the molecule.  Compute C(t) by replacing the trace 

by an integral over the classical action variable I ( Remember, E=νI classically, or E= 
hν(n+1/2) quantum-mechanically, or I≈ hn.)  You may approximate the partition function 
by  

   Q = Σ exp[-E(n)/kT]  ≈ ≈ 
1
h ⌡⌠

0

∞
 exp[-E(I)/kT] dI  

 



 and make similar approximations in the trace integral to obtain C(t).  Keep in mind that 
Δrmax, the maximum deviation from equilibrium, is a function of v (and hence I). 

 
  b. Calculate the line shape Ι(ω) by Fourier transform of C(t). 
 
 
 
 


