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Hour Exam 2 
 
1. (10 pts) Consider a particle in a 3D cubic box, at an energy level given by 𝐸 =	 $%	&

'

()*'
 ,  

 
where L is the length of each side and m is the mass of the particle. What is the degeneracy of this 
state, that is, how many different combinations of the nx, ny, nz quantum numbers can you have, 
that all lie at this exact energy?   
 
Solution: 
The energy for a cubic box is given by 

   𝐸 = 𝐸+ + 𝐸- + 𝐸. =
/01'203'204'5&'

()*'
																																				 

So we need to find out how many different combinations of nx, ny, nz satisfy 
/𝑛+7+𝑛-7+𝑛.75 = 19																																																						 

The most expedient way to do this is by simple logic and guess/check. To get an odd sum of three 
squares, 2 n’s must be even and one must be odd, or all three must be odd. Two of the n’s must at 
least equal 1, in which case the third has to be <√17 or ≤4. 16+1+1=18 only, so 4 is out. That 
leaves only combinations of 1,2,3 such as (1,2,2) or (1,3,3) or (2,2,3). The only one that works is 

(17 + 37 + 37) = 19 
There are 3 different combinations of nx, ny, nz  that satisfy the above condition. They are listed 
below: 

𝑛+ = 1, 𝑛- = 3, 𝑛. = 3 
𝑛+ = 3, 𝑛- = 3, 𝑛. = 1 
𝑛+ = 3, 𝑛- = 1, 𝑛. = 3 

Thus the degeneracy is 3. 
 
 

2. (10 pts) Consider the ∞-dimensional Hilbert space formed by the solutions of the Schrödinger 
equation for a molecule rotating in the plane:	𝜑?(𝜙)~𝑒C?D  where M= ..., -2, -1, 0, 1, 2....  
ANY normalizable function y(f) over the angle f=0⋯2π should be expressible in terms of this 
basis. Show that y=cos2f can be expressed as a sum over these basis functions. [Hint: express the 
function in terms of complex exponentials.] 

Solution: 
Recall that 𝑒CD = cos(𝜙) + 𝑖𝑠𝑖𝑛(𝜙) so cos(𝜙) = $

7
/𝑒CD + 𝑒KCD5 

Thus, 
 cos7 𝜙 = 	 $

L
/𝑒CD + 𝑒KCD5

7
= $

L
/𝑒7CD + 2𝑒N + 𝑒K7CD5 = $

L
φ7(𝜙) +

$
7
φN(𝜙) +

$
L
φK7(𝜙) 

Thus cos7 𝜙 is expressible in terms of eigenfunctions of the rotational Hamiltonian. 
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3. (5+5+5+5 pts) The technique of finding the eigenvalues and eigenvectors of an operator in 
matrix form is called “diagonalization.”  In this problem, you will diagonalize the matrix  

 𝑀 = Q			3 −2
−2 			3S . 

The starting point is the equation (𝑀 − 𝜆 ∙ 𝐼) ∙ 𝐯 = 0, where 𝑀 is your non-diagonal matrix, 𝜆 is 
any of the eigenvalues, v is one of the eigenvectors, and I is the identity matrix. 
 
a. To obtain a non-trivial solution, we impose the condition det‖𝑀 − 𝜆 ∙ 𝐼‖ = 0; solve the 

determinant to find the eigenvalues of M. 
b. Using the answers derived from part a, find the eigenvectors of 𝑀. 
c. Normalize these eigenvectors. 
d. What property of the matrix makes sure that the eigenvalues are real? 
 
Solution: 

a. Start by determining the determinant: 
_3 − 𝜆 −2
−2 3 − 𝜆_ = 0 

 
(3 − 𝜆)7 − 4 = 𝜆7 − 6λ + 5 = (𝜆 − 5)(𝜆 − 1) = 0 

So we can determine: 
𝜆 = 1, 5 

 
b. To find the eigenvectors, we simply impose the condition from the eigenvalue problem: 

(𝑀 − 𝜆 ∙ 𝐼) ∙ 𝐯 = 0 
(Note that any multiple of v still satisfy the above condition.) 
Now we can plug each eigenvalue into this equation and solve for 𝐯: 
 
𝝀 = 𝟏 : 

Q3 − 1 −2
−2 3 − 1SQ

𝑐$
𝑐7S = 0 

We get two equations: 
𝑐$ − 𝑐7 = 0 
−𝑐$ + 𝑐7 = 0 

 
The equation only determines c1 in terms of c2 or vice-versa, not both.  To get both, we also 
need to invoke normalization, or c12+c22=1. A simple trick is to assign a value to either 𝑐$ or 
𝑐7, and then solve for the other. It is by far the easiest course of action to set one of the constants 
equal to unity and solve for the other, and that is what shall be done here. Setting 𝑐$ = 1 we 
have  

1 − 𝑐7 = 0 
and  

−1 + 𝑐7 = 0 
 
Both equations confirm that 𝑐7 must equal 1  (BECAUSE we set 𝑐$ = 1). Thus the eigenvector 
corresponding to 𝜆 = 1 is given by  



Chem	442	
Fall	2016	
 

𝐯𝟏 = Q11S 
Now we determine the other eigenvector: 
 
𝝀 = 𝟓 : 

Q−2 −2
−2 −2SQ

𝑐$
𝑐7S = 0 

The two equations are: 
𝑐$ + 𝑐7 = 0 
𝑐$ + 𝑐7 = 0 

 
Which is a somewhat boring system of equations. Setting c1 equal to 1, we find: 

1 + 𝑐7 = 0 
and 

1 + 𝑐7 = 0 
 
Both equations confirm (we’ll call the eigenvector for 𝜆 = 5 “v5.” 
 

𝐯𝟓 = Q 1−1S 
 
c. Normalizing 𝐯𝟏 we write  

𝐯𝟏h ∙ 𝐯𝟏 = (1 1)Q11S = 1 + 1 = 2 

Dividing 𝐯𝟏 by √2 gives the normalized eigenvector 
 

𝐯𝟏 =
1
√2

Q11S 

Normalizing 𝐯𝟓 we write  
𝐯𝟓h ∙ 𝐯𝟓 = (1 −1) Q 1−1S = 1 + 1 = 2 

Dividing 𝐯𝟓 by √2 gives the normalized eigenvector 
 

𝐯𝟓 =
1
√2

Q 1−1S 

d. Real eigenvalues are guaranteed by the fact that the matrix is symmetric. 
 Done! 
 

 
4. [5+10 pts] The rotational Hamiltonian in spherical co-ordinates is given by  

𝐻klmn = −
	ℏ7

2𝑚𝑟7 r
1

𝑠𝑖𝑛𝜃
𝜕
𝜕𝜃 u𝑠𝑖𝑛𝜃

𝜕
𝜕𝜃v +

1
𝑠𝑖𝑛7𝜃

𝜕7

𝜕𝜑7w 

 
a. Show that you can also express the Hamiltonian as:   
 𝐻klmn = − 	ℏ'

7)l'
x𝑐𝑜𝑡𝜃 {

{|
+ {'

{|'
+ $

}C0'|
{'

{~'
�. 
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b. Operate with the Hamiltonian on the function 𝑌$,K$(𝜙, 𝜃) =

$
7�3/(2𝜋)𝑒

KCD𝑠𝑖𝑛𝜃   to verify 
that this is an eigenfunction of 𝐻klmn, and find its eigenvalue. 
 
Solution: 
a. We consider, 
 
$

}C0|
{
{|
Q𝑠𝑖𝑛𝜃 {

{|
S = $

}C0|
{(}C0|)
{|

Q {
{|
S + $

}C0|
𝑠𝑖𝑛𝜃 {

{|
Q {
{|
S = �m}|

}C0|
{
{|
+ {'

{|'
  

 
⇒ $

}C0|
{
{|
Q𝑠𝑖𝑛𝜃 {

{|
S + $

}C0'|
{'

{~'
= 𝑐𝑜𝑡𝜃 {

{|
+ {'

{|'
+ $

}C0'|
{'

{~'
.  

 
This suggests that the two forms are equivalent. 
b. 𝐻klmn𝑌�?(𝜃,𝜙) = − 	ℏ'

7)l'
x {

'

{|'
+ 𝑐𝑜𝑡𝜃 {

{|
+ $

}C0'|
{'

{D'
� 𝑒KCD𝑠𝑖𝑛𝜃 

Note that we can leave out the normalization constant $
7 �3/(2𝜋) because it will simply show up 

on both sides. Taking the derivatives, 

𝐻klmn𝑌�?(𝜃, 𝜙) = −
	ℏ7

2𝑚𝑟7
�−𝑒KCD𝑠𝑖𝑛𝜃	 + 𝑐𝑜𝑡𝜃𝑒KCD𝑐𝑜𝑠𝜃 +

−1
𝑠𝑖𝑛7𝜃 𝑒

KCD𝑠𝑖𝑛𝜃�

= −
	ℏ7

2𝑚𝑟7 r−𝑠𝑖𝑛𝜃	 +
𝑐𝑜𝑠7𝜃
𝑠𝑖𝑛𝜃 +

−1
𝑠𝑖𝑛𝜃w 𝑒

KCD 

 = − 	ℏ'

7)l'
{−𝑠𝑖𝑛𝜃	 − 𝑠𝑖𝑛𝜃}𝑒KCD 

 = 	ℏ'

)l'
𝑒KCD𝑠𝑖𝑛𝜃 

Thus the eigenvalue is 	ℏ
'

)l'
= 	ℏ'�(�2$)

7)l'
 for l =1, as expected for the 𝑌$,K$ eigenfunction. 

 
 
 
5. (10+5+5) Consider a function y whose average value is 〈y〉 = 0. The standard deviation Δ𝑦 of 
such a function is given by Δ𝑦 = �〈𝑦7〉 in terms of its variance 〈𝑦7〉. Let’s use this basic statistics 
formula and Dirac bracket notation to prove a familiar formula for the ground state |0> of the 
harmonic oscillator. 
 
Recall the raising operators 𝑎h and lowering operators a, such that 𝑎h|0⟩ 	= |1⟩ and 𝑎|1⟩ = |0⟩ 
moves you up or down one vibrational state, to the next higher (or lower) energy level. Also recall 
that for an oscillator of mass m=1 and force constant k=1 (for simplicity), we have that 𝑥 =
�ℏ/2(𝑎h + 𝑎) and 𝑝 = 𝑖�ℏ/2(𝑎h − 𝑎). 
 
a. Show that ⟨0|𝑥7|0⟩ = ℏ/2 by multiplying out (𝑎h + 𝑎)7. [Hint: two of the 4 terms give zero. 
Why?] 
b. Show that ⟨0|𝑝7|0⟩ = ℏ/2 by multiplying out (𝑎h − 𝑎)7. 
c. Based on your result in a. and b., what is Δ𝑥Δp =? What is the name of this familiar formula? 
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Congrats: Werner Heisenberg won the Nobel prize in 1932 for your derivation! 
 
 
Solution: 
a. Recall that 𝑎|1 >	=|0 > and		𝑎h|0 >	=|1 > with the limitation that 𝑎|0 >	= 0.  

Thus, 

〈𝑥7〉 = 	 〈0|𝑥7|0〉 = u
ℏ
2v
〈0|(𝑎h + 𝑎)7|0〉 = 	 u

ℏ
2v
〈0|(𝑎h7 + 𝑎h𝑎 + 𝑎𝑎h + 𝑎7)|0〉 

 

=
ℏ
2 Q
〈0 _𝑎h7_ 0〉 + 〈0�𝑎𝑎h�0〉 + 〈0�𝑎h𝑎�0〉 +	 〈0|𝑎7|0〉S	 

In this expression, the first term is zero because 𝑎h7 raises |0⟩ to  |2⟩, which is orthogonal to ⟨0|. 
The second term equals 1 because 𝑎h|0⟩ = |1⟩ and 𝑎|1⟩ = |0⟩ and ⟨0|0⟩ = 1. The third term is 
again zero because 𝑎|0⟩ 	= 0. Finally the last term is zero again because lowering |0⟩ just gives 0. 

Thus 〈𝑥7〉 = 	 ℏ
7
 

 
b.  

〈𝑝7〉 = 	 〈0|𝑝7|0〉 = u−
ℏ
2v
〈0|(𝑎h − 𝑎)7|0〉 = 	 u−

ℏ
2v
〈0|(𝑎h7 − 𝑎h𝑎 − 𝑎𝑎h + 𝑎7)|0〉 

 

= −
ℏ
2 Q
〈0 _𝑎h7_ 0〉 − 〈0�𝑎𝑎h�0〉 − 〈0�𝑎h𝑎�0〉 +	 〈0|𝑎7|0〉S 	=

ℏ
2	 

again, for the same reasons already given for x. 
 

c. Δ𝑥Δ𝑝 = 	�〈𝑥7〉�〈𝑝7〉 = �ℏ
7
�ℏ
7
= ℏ

7
     or     Δ𝑥	Δ𝑝 = ℏ

7
  . 

 
Yet again, we find the equation for the “uncertainty principle”: the ground state of the harmonic 
oscillator, or |0⟩, satifies the uncertainty principle and is a “minimum uncertainty wavepacket.” 


