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Exam 1 Solution 

Useful numbers and plots you may need are at the end. 
 

1. (18 pts) Calculate the wavelength of light that will be absorbed by the molecule propene (it has 
a C-C=C backbone) by approximating its electronic structure by an “electron in a box.” 
 
 This one was similar to problem 2.4 in the book. 
 
a. (2) With d(C-C) = 1.54 Å and d(C=C) = 1.35 Å, what is the length L of the box, assuming the 
electron can move through the whole carbon skeleton? 
 
 Solution: L = 2.89 Å (2 points) 
 
b. (3+3) Of the three p electrons in propene, the first two will fill the n=1 energy level of the box, 
and the third electron, which will be excited by the light, will be in the n=2 level or “HOMO” 
(highest occupied molecular orbital). Write down the particle-in-a-box energy formula for the 
third electron in terms of n, h, me and L and calculate the energy of the n=2 electron in Joules. 

 
Solution: En = !

"#"

$%&"
   (3 points) 
 

=
(2)+(6.626 ∙ 10123	𝐽𝑠)	+

8(9.1 ∙ 10129	𝑘𝑔)(2.89 ∙ 1019<	𝑚)+ 

= 2.88 .10-18 J (3 points) 
 
c. (3+2) When light is absorbed, the electron goes to the n = 3 level. Write down the formula for 
the energy difference between the n = 3 and n = 2 states, and calculate the energy difference in 
Joules. 

Solution: ∆𝐸 = (3+ − 2+) #"

$%&"
  (3 points) 

 
∆𝐸 = (3+ − 2+) (B.B+B∙9<CDE	FG)	"

$(H.9∙9<CDI	JK)(+.$H∙9<CIL	%)"
 (2 points) 

= 3.61 . 10-18 J 
 
d. (3+2) Finally, use Planck’s law to convert the energy to a wavelength in nm. What part of the 
electromagnetic spectrum at the end of the exam is it? 

Solution: 3.61 ∙ 1019$𝐽 = 	 #M
N
= (B.B+B∗9<CDE	FG	)(2.<∗9<P	%/G)

N
 (3 points) 

𝜆 = 6.2 .10-8 m = 55 nm  
This is in the extended UV range (2 points) 

 
Note that experiments show that propene absorbs in the mid-UV, at longer wavelengths. The 
reason is that the Coulomb potential is a ‘softer’ box than the particle in a box. However, the box 
approximation gets better the longer the conjugated chain is, as the ‘edge effects’ are smaller in 
those cases. 
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2. (15 pts) The normalized wavefunction Ψ(𝑥) = U 9
√+
W exp[−|𝑥|/2] is also known as a “1s orbital” 

for an electron whose nucleus sits at x=0. Here x is in Ångstrom units. 

a. (4+2+2) Sketch the wavefunction roughly between x= -5 to 5 Å, labeling the axes “x” and “Ψ” 
and indicating roughly where x=±2 lies on the x-axis. 

Solution: This one was similar to problem 1.8 in the book and H12, #2 

  

b. (2+3+2) Calculate the probability of finding the electron at a distance between 3 and 3.1 Å from 
the nucleus by first writing down the integral with correct integration limits, then evaluating the 
integral, and plug in the numbers to get the probability. 

Solution:  
  P = ∫ |𝜑(𝑥)|+𝑑𝑥2.9

2  

                           = ∫ aU 9
√+
W exp[−|𝑥|/2]a

+
𝑑𝑥2.9

2   

   =  9
+ ∫ 𝑒1|c|	𝑑𝑥2.9

2 	= 19
+
𝑒1ca

2

2.9
 

                         Integrate from 3 to 3.1 ≈ 0.00237 
 
The actual probability is twice that because electrons at -3 to -3.1 Å are also at a distance of 
between 3 and 3.1 Å from the nucleus. However, we’ll give full credit for either answer if you 
overlooked that! 
 
 
 
3. (10 pts) Someone plays the kettle drum. 
 
a. (3+3) If they play on the kettle drum a ”low “A” note at 110 Hz for 50 milliseconds (0.05 s), 
what is the uncertainty in the pitch Dn as a percentage of the frequency n? Formula and value. 
 
Solution:   This one was similar to H5 #1  

∆𝑣∆𝑡 = 9
3f

 [Note n=w/2p] 
 

Therefore 	
∆𝑣 = 9

<.+f
≈ 1.59 Hz (3 points) 
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∆h
h
× 100% ≈ 1.45% (3 points for the formulas, 3 for the values) 

 
b. (2+2) Can they distinguish the “A” from an “A#” at 116.5 Hz? In one sentence, why do you 
think orchestras use kettle drums, but not snare drums, to play bass melodies in symphonies? 
 
Solution: Yes. (2 points) 
  Kettle drums sound long enough that one can make out the pitch reasonably well 
to play a bass melody; snare drums don’t. (2 points) 
 
 
 
4. (18 pts) If a quantum particle is in state Ψ(𝑥, 𝑡), let us show that the average value of the energy 
from many measurements is given by  
 〈𝐸〉 = 𝐸p = ∫ 𝑑𝑥Ψ∗(𝑥, 𝑡)𝐻rΨ(𝑥, 𝑡)s

1s ,  
a. (3+3) Write down the formula for 𝑃(𝐸 = 𝐸!) = ? from postulate 4, calling the energy 
eigenvalues En and the eigenfunctions φ!(𝑥). Then recall from the $ bills homework that 𝐴̅ =
Σ𝑎!𝑃(𝐴 = 𝑎!) for any observable A. Combine these two equations to write an expression for 
〈𝐸〉 in terms of the eigenvalues and eigenfunctions of 𝐻r. 

b. (3) Now write down the same expression for  〈𝐸〉 again, but multiply out the | |2 square modulus 
explicitly. Something like  

 ∫ 𝑑𝑥Ψ∗(𝑥, 𝑡)φ!(𝑥)
s
1s ∫ 𝑑𝑥′𝜑!∗(𝑥′)Ψ(𝑥′, 𝑡)

s
1s   

should appear in your expression (the integral times its complex conjugate). It’s always a good 
idea to give your integration variables different names (here x and x’) when you have several 
integrals in an expression. 

c. (3) Your expression for 〈𝐸〉	has an “En” outside the first integral. Since En is a constant, you can 
stick it inside the integral in front of φ!(𝑥), and play the reverse of a trick we have done in class 
several times: since 𝐻rφ!(𝑥) = 𝐸!φ!(𝑥), you can replace “En” by what in the integral? Write 
down the formula for 〈𝐸〉 again, this time without En in it. 

d. (3+3) Remember that any function can be expanded as a linear combination of a complete set 
of eigenfunctions. For example,  Ψ(𝑥, 𝑡) = Σ𝑐%(t)	φ!(𝑥), where 𝑐%(𝑡) = ∫ 𝑑𝑥′𝜑!∗(𝑥′)Ψ(𝑥′, 𝑡)

s
1s  

is the “overlap integral” between φ!(𝑥) and Ψ(x, t). Look at your expression from part c., and 
replace one of the integrals by cm, and write down the resulting formula for 〈𝐸〉 = 𝐸p. Finally do 
the sum Σ𝑐%	φ!(𝑥),	which equals Ψ(𝑥, 𝑡), and write down your final expression for 〈𝐸〉 = 𝐸p. 

Congrats, in 1926 you would have won a Nobel Prize! 

Solution: Similar to Practice Exam Fall 2016, Q. 5, if you substitute “H” instead of “A” and “En” 
instead of “an” 

a.  (3 pts) 

𝑃(𝐸 = 𝐸!) = 	}𝐸! ~� 𝑑𝑥𝜑!∗(𝑥)Ψ(𝑥, 𝑡)
s

1s
~
+

!
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 (3 pts) 	

𝐸p = 	}𝐸! ~� 𝑑𝑥𝜑!∗(𝑥)Ψ(𝑥, 𝑡)
s

1s
~
+

!

 

b. (3 pts) 

𝐸p = 	}𝐸! � 𝑑𝑥Ψ∗(𝑥, 𝑡)φ!(𝑥)
s

1s
� 𝑑𝑥′𝜑!∗(𝑥′)Ψ(𝑥′, 𝑡)
s

1s!

 

c. (3 pts) 

𝐸p = 	}� 𝑑𝑥Ψ∗(𝑥, 𝑡)𝐸!φ!(𝑥)
s

1s
� 𝑑𝑥′𝜑!∗(𝑥′)Ψ(𝑥′, 𝑡)
s

1s!

=}� 𝑑𝑥Ψ∗(𝑥, 𝑡)𝐻rφ!(𝑥)
s

1s
� 𝑑𝑥′𝜑!∗(𝑥′)Ψ(𝑥′, 𝑡)
s

1s!

 

d. (3+3 pts) 

𝐸p = 	}� 𝑑𝑥Ψ∗(𝑥, 𝑡)𝐻rφ!(𝑥)
s

1s
� 𝑑𝑥′𝜑!∗(𝑥�)Ψ(𝑥�, 𝑡)
s

1s!

= � 𝑑𝑥Ψ∗(𝑥, 𝑡)𝐻r}φ!(𝑥) ∙ � 𝑑𝑥′𝜑!∗(𝑥�)Ψ(𝑥�, 𝑡)
s

1s!

=
s

1s

= � 𝑑𝑥Ψ∗(𝑥, 𝑡)𝐻r}φ!(𝑥) ∙ 𝑐!(𝑡)
!

=
s

1s
	� 𝑑𝑥Ψ∗(𝑥, 𝑡)𝐻rΨ(𝑥, 𝑡)

s

1s
 

This last step we discussed in lecture 11: since the time-dependent and time-independent 
Schrödinger equations are equivalent (via Fourier transform), we can expand any Ψ(𝑥, 𝑡) in terms 
of eigenfunctions of the energy φ!(𝑥); here we included the 𝑒1����/ℏ in the phase factor 𝑐!(𝑡) =
𝑐!𝑒1����/ℏ to keep the notation shorter, but of course, if you wrote that out in full, that’s full credit. 

 

Useful numbers: 
1 atomic mass unit = 1.66 x 10-27 kg; mass of electron me = 9.109 x 10-31 kg 
Planck’s constant h = 6.626 × 10123 J.s; note that ℏ = 2ph is about 6.28 times larger. 
1 m = 100 cm; 1 Å = 0.1 nm = 100 pm 

 

This integral is 
the overlap 
coefficient cn 


