Exam 1 ANSWER KEY

1. (10 pts) **Calculate** the energy separation (in Joules) between the n = 2 and n = 3 levels of a fluorine molecule confined in a one-dimensional box of length 1 cm. The energy levels for the particle in a box are given by

$$E_n = \frac{h^2 n^2}{8mL^2}$$

<u>Answer:</u> One fluorine atom is 18.998 amu, one fluorine molecule would then be 37.996 amu. One mole, 6.626×10^{23} molecules, of fluorine molecules would be 0.037 kg implying a single fluorine molecule is 6.31×10^{-26} kg (5 pts)

$$\Delta E = \frac{(6.626 \times 10^{-34})^2}{8(6.31 \times 10^{-26})(0.01)^2} (9 - 4) = 4.35 \times 10^{-38} J \text{ (5 pts)}$$

2. (10 pts) The Lennard-Jones potential for argon is given by the formula:

$$V(r) = 502.8 \left[\left(\frac{3.34}{r}\right)^{12} - \left(\frac{3.34}{r}\right)^{6} \right]$$

where r is in Ångströms. Calculate the force between two atoms, $F(r)=-\partial V/\partial r$. Show that F approaches 0 as r approaches ∞ . Does F equal 0 at any other value of r? If so, at what value of r?

Answer:

$$F(r) = -\frac{\partial V}{\partial r} = -502.8 \left[(-12) \left(\frac{3.34^{12}}{r^{13}} \right) - (-6) \left(\frac{3.34^6}{r^7} \right) \right] = 3016.8 \left[2 \left(\frac{3.34^{12}}{r^{13}} \right) - \left(\frac{3.34^6}{r^7} \right) \right] (5 \text{ pts})$$

$$\lim_{r \to \infty} 2 \left(\frac{3.34^{12}}{r^{13}} \right) = 0 \text{ and } \lim_{r \to \infty} \left(\frac{3.34^6}{r^7} \right) = 0 \text{ implies that } \lim_{r \to \infty} F(r) = 0 \text{ (3 pts)}$$

$$F = 0 \text{ when } 2 \left(\frac{3.34^{12}}{r^{13}} \right) = \left(\frac{3.34^6}{r^7} \right) \text{ or } 2 \cdot 3.34^6 = r^6. \text{ Then } r = 3.34 \cdot 2^{1/6} \text{ Å.}$$

at any other r value. As two argon atoms move further away, the force each exerts on the other decreases. (2 pts)

3. (15 pts) An electron has mass $m_{c} \approx 9.1 \times 10^{31}$ kg.

a. Its velocity has a range of $\Delta v = 5$ m/s. What is the range of positions that will be measured?

b. In a helium atom, the range of velocities for an electron is closer to two million meters/second $(2 \times 10^6 \text{ m/s})$. What is the range of positions, Δx , that will be measured in meters? In Ångstroms? In nanometers?

c. How does the length in (b) compare to the Bohr radius: 5.29×10^{-11} m? What is the significance of that comparison?

Answer:

a. Starting with the Heisenberg uncertainty principle

Chem 442 Fall 2016

 $\Delta x \Delta p = \frac{\hbar}{2}$, we have the relationship $\Delta x = \frac{\hbar}{2\Delta p}$ and $\Delta p = m_e \Delta v$. If $\Delta v = 5$ m/s and $m_s \approx 9.1 \times 10^{31}$ kg, $\Delta p = 4.55 \times 10^{30}$ kg*m/s and $\Delta x = 1.16 \times 10^{3}$ m. (5 pts)

b. Same work as above, but this time $\Delta v = 2.0 \times 10^6$ m/s making $\Delta p = 1.82 \times 10^{24}$ kg·m/s and $\Delta x = 2.90 \times 10^{41}$ meters = 2.90×10^{41} Å = 2.90×10^{2} nm (5 pts)

c. The length in (b) is a little more than half (0.547 factor difference) of the Bohr radius. This suggests that the most probable size of the 1s orbital of a helium atom is smaller than that of hydrogen. (5 pts)

4. (20 pts) Consider the sound wavefunction

 $\Psi(t) = \exp[-(t/2\Delta t)^2] \exp[i\omega t]$

a. Make two separate sketches of the real and of the imaginary parts of $\Psi(t)$ where $\Delta t = 1$ s and $\omega = 10$ s⁻¹, from t = -5 to 5 s. Remember even/oddness of the sin and cos functions.

b. Consider only the real part of $\Psi(t)$, and **create another sketch** of what would happen if Δt was increased to 2 s.

c. Now **sketch** what would happen to the real part if Δt remains 1 s, but the frequency is inreased to $\omega = 20 \text{ s}^{-1}$.

d. **Does** taking the complex conjugate of $\Psi(t)$ change either of your sketches from part (a)? If so, how? (You can state the answer in words – no sketch required.)

d. Taking the complex conjugate of the wavefunction only changes the imaginary part. The imaginary part of the wavefunction is now negated $(\sin(x) \rightarrow -\sin(x))$. (5 pts)

5. (20 pts) Let a quantum particle be in state $\Psi(x, t)$. In this question, we will use postulate 4 to show step-by-step that the average value $\langle A \rangle = \overline{A}$ of observable A is given by

$$\bar{A} = \int_{-\infty}^{\infty} dx \Psi^*(x,t) \hat{A} \Psi(x,t),$$

where \hat{A} is the operator for observable A.

a. Recall from the \$ bills homework that $\bar{A} = \sum a_n P(A = a_n)$, and from postulate 4 that $P(A = a_n) = \left| \int_{-\infty}^{\infty} dx \varphi_n^*(x) \Psi(x, t) \right|^2$. Combine these two equations to write an expression for \bar{A} in terms of the eigenvalues and eigenfunctions of \hat{A} .

b. Now write down the same expression for \overline{A} , but multiply out the $||^2$ square modulus containing the integral explicitly. Something like

$$\int_{-\infty}^{\infty} dx \Psi^*(x,t) \varphi_n(x) \int_{-\infty}^{\infty} dx' \varphi_n^*(x') \Psi(x',t)$$

should appear in your expression (the integral times its complex conjugate). It's always a good idea to give your integration variables <u>different</u> names (here x and x') when you have several integrals in an expression!

c. Your expression for \overline{A} has an " a_n " outside the first integral. You can stick it inside the integral in front of $\varphi_n(x)$, and play the reverse of a trick we have done in class several times: since $\widehat{A}\varphi_n(x) = a_n\varphi_n(x)$, you can replace " a_n " by what in the integral? Write down the formula for \overline{A} again.

d. Remember that any function can be expanded as a linear combination of a complete set of functions. For example, $\Psi(x,t) = \Sigma c_m \varphi_n(x)$, where $c_m = \int_{-\infty}^{\infty} dx' \varphi_n^*(x') \Psi(x',t)$ is the "overlap integral" between φ_n and Ψ . Look at your expression from c., and you should be able to **replace one of the integrals** by c_m , and then **do the sum** $\Sigma c_m \varphi_n(x)$, which equals $\Psi(x,t)$. If all went right, you should now have the expression

$$\bar{A} = \int_{-\infty}^{\infty} dx \Psi^*(x,t) \hat{A} \Psi(x,t)$$

that you were supposed to prove. Congrats, in 1926 you would have won a Nobel Prize!

Chem 442 Fall 2016

Answer:

a. (5 pts)

$$\bar{A} = \sum_{n} a_{n} \left| \int_{-\infty}^{\infty} dx \varphi_{n}^{*}(x) \Psi(x,t) \right|^{2}$$

b. (5 pts)

$$\bar{A} = \sum_{n} a_n \int_{-\infty}^{\infty} dx \Psi^*(x,t) \varphi_n(x) \int_{-\infty}^{\infty} dx' \varphi_n^*(x') \Psi(x',t)$$

c. (5 pts)

$$\bar{A} = \sum_{n} \int_{-\infty}^{\infty} dx \Psi^{*}(x,t) a_{n} \varphi_{n}(x) \int_{-\infty}^{\infty} dx' \varphi_{n}^{*}(x') \Psi(x',t)$$
$$= \sum_{n} \int_{-\infty}^{\infty} dx \Psi^{*}(x,t) \hat{A} \varphi_{n}(x) \int_{-\infty}^{\infty} dx' \varphi_{n}^{*}(x') \Psi(x',t)$$

d. (5 pts)

$$\bar{A} = \sum_{n} \int_{-\infty}^{\infty} dx \Psi^{*}(x,t) \hat{A} \varphi_{n}(x) \int_{-\infty}^{\infty} dx' \varphi_{n}^{*}(x') \Psi(x',t)$$
$$= \int_{-\infty}^{\infty} dx \Psi^{*}(x,t) \hat{A} \sum_{n} \varphi_{n}(x) \cdot c_{n} = \int_{-\infty}^{\infty} dx \Psi^{*}(x,t) \hat{A} \Psi(x,t)$$

