Homework H20 Solution

Turn in 1: The molecule H, contains 3 electrons. The wave function can be written
approximately as a product over individual electron wavefunctions, or ¥(r,, r,, r;) =
W, (r) Wy (ry) W (r;).

a. Show that this function does not satisfy P,; ¥ = —.

b. Convince yourself of (a) with a numerical example. The table below shows some values
of the one-electron wavefunctions along the x axis (y=z=0 for simplicity)

x=0.7 A x=1.1 A x=1.7 A
Y, (x) 0.02 -0.14 0.04
W, (x) 1.3 0.8 0.23
Y.(x) -03 0 0.1

What is the value of ¥ when electron #1 is in state “a” at x;=1.1 A, electron #2 in state “b”
at x;=0.7 A, and electron 3 in state “c” at x3=1.7 A? Now apply P,; switching electrons 2
and 3 (i.e. x; and x3). What is the value of ¥ now? Is it —\V'?

c. Write down the correct determinant form of the wavefunction W (r,) W, (r,) Y ().

d. Evaluate this 3x3 determinant. How many terms do you get? How many are positive?
How many are negative?

e. Show that this function does satisfy P,; ¥ = —W.

Basically, the idea of the determinant is to produce all possible permutations of the electrons
among states “a”, “b” and “c”, with a minus sign whenever a pair of electrons is switched (two
switches gives (-)*(-)=(+)). This automatically makes sure that the wavefunction is antisymmetric
under exchange of identical fermions.

Solution:
a. Y =¥ ()W (1) ¥:(13)
Py¥ = Y, (r)¥p (r)¥,.(rp) = —¥
b. ¥ = (-0.14) * (1.3) * (0.1) = —0.0182
Now,

13234’ = Y, (r)¥, () ¥, (12)
= (—0.14) % (0.23) * (—0.3) = 0.00966 # —¥

c. The correct determinant form of the wavefunction is the one that ensures all possible
combinations of the electrons in the available states.

Yo(r)) ¥p(r) We(ry)
¥ = ? V() Wp(r) W(r)
Wa(rs) Wp(r3) W.(r3)



d. Evaluating the determinant gives you,

V= Y (r)[Wp(r) ¥ (13) = W (1) We(12)] = W (r) [ (1) ¥ (r3) — P (r3) ¥ ()] +
Ve (r) [P () Wy (13) — Yo (r3) ¥, ()]

=Y, ()W, () ¥, (13) — Vo (r) Wy, () W (1) — Wy (1) W () W (13)
+ Yp (r) ¥, (3) ¥ (1) + Y (r)Wa ()W), (r3) — Y (r) Wo (r3) Wy, (1)

Thus we get 6 terms, of which 3 are positive and 3 are negative.

e.
1323'1” = Y (r) W, (r3)¥: () — Y (r) ¥y () ¥e(13) — W (r) ¥ () WL (1) +
Yy (r)¥a(r)¥e(rs) + Y)Y () Wy (r2) — Ve (r) ¥ () ¥ (13)

= -y
2. It was shown a long time back that any wavefunction can be written as a linear
combination of basis functions, ¥ (x) =Y, ¢,®,(x). In “bra-ket” notation, this is

expressed as ) = Y, ¢, |n).
a. Prove explicitly the analogy of functions to vectors stated in class by Gruebele, namely

that ¢, = [ dxg;, ()P (x).

b. Now do the same in bracket notation, and prove explicitly the analogy of kets to vectors
stated in class by Gruebele, namely that ¢,, = (n|y).

Solution:

a. Expanding the summation, we get

Y(x) = 101 (%) + c202(x) + -+ + crn (X) + Cpip1Ppia () + -+

Now multiply both sides by ¢,,* (x) and integrate over space,
[ dx0i@ v = e, [ dxpi00 0200+ [ dxgi(0) 9,00 +
+ an dxpp (x) @p(x) +

We know (or rather ensured ) that the basis functions are orthonormal, that is,

[ @20 om0 = 0,1 m = n

=1,ifm=n



Thus, in the above expansion, only the integral with c,, survives, the rest are 0.

Thus [ dx @;(x) Y(x) = ¢,

This is the standard technique employed to obtain the coefficient of a particular basis in a
wavefunction, in other words, the projection of a wavefunction onto a basis function.

b. Expanding the summation for the linear superposition of the wavefunction,
[P) = c1|1) + ¢2[2) + - + e n) + cpyan + 1) + -
Now multiply both sides by < n| to integrate,
() = c1(n|1) + c(n|2) + -+ + cp(nin) + e (nfn + 1) + -

= ¢, [Since the basis states are orthonormal, i.e., (m|n) = 0 if m # n,
=lifm=n

3. Remember from basic matrix algebra that multiplying any vector by the identity matrix,
leaves the vector unchanged. Show explicitly that the identity operator works in a similar
fashion, that is [ 1 (x) = ¥ (x) for any wavefunction 1.

a. You learned in lecture that the identity operator is given by [ = ¥,[n){n|in Dirac
notation; show by analogy that it can be written as Y., ¥, (x) [ dx " (x)_ in ordinary
function notation.

b. Now apply it to /() to show that you get the same function back. [Hint: the overlap

integral [ dx " ()Y (x) is just c,.]
Solution:

a. First we write the wavefunction as a linear superposition of basis states,

Y =cPr+ Yy + o+ Py = Y0 H P + Yoy

You proved in Problem 2 that ¢,, = (n|p) = [ dx 5 (x) P(x)

So,(x) =1 [ dx p1(x) Y(x) + ¥, [ dx p3(0) Y(x) + -+ Py [ dox i (x) Y (x)

or, () = (Z b | ax wzoo) e

Thus, Y., ¥y, [ dx 1y (x) _ is the identity operator for functions, since it leaves any
function ¥ unchanged.



Ip() = Gn¥n [ dx () ) ¥(x)

=t | dx i)

=) () =p

n

Thus, the identity operator does indeed leave any function unchanged.



