
Homework H13 Solution 
 

1. In lecture L11, Gruebele showed that any time-dependent wavefunction Ψ(x,t) can be 
written as a sum over stationary states (eigenstate times 𝑒!

!
ℏ𝐸!! factor): 

 𝜓 𝑥, 𝑡 = 𝑐!𝜓!(𝑥)!   𝑒!
!
ℏ𝐸!!  (1) 

still satisfies the time-dependent Schrödinger equation. He claimed that the coefficients cn 

can be calculated as 𝑐! = 𝑑𝑥!
!! 𝜓!∗(𝑥)𝜓 𝑥, 𝑡 = 0 . Prove this by 

a. Set t=0 in equation (1) (what happens to the exponential?) to get a simple formula for  

𝜓 𝑥, 𝑡 = 0 , the wavefunction at time 0. 

b. Multiply both sides of the equation in (a) by 𝜓!∗(𝑥), and then on both sides integrate 

over dx from ±∞ (you do not need to evaluate the integral). 

c. Here’s an interesting couple of facts about eigenfunctions of any differential equation 

of the type 𝐴𝜑! = 𝑎!𝜑!, which was proved in Math 285: 

 1) All eigenfunctions are orthogonal or 𝑑𝑥!
!! 𝜑!∗ 𝑥 𝜑! 𝑥 = 0  𝑖𝑓  𝑛 ≠ 𝑚. 

 2) Eigenfunctions are normalizable or 𝑑𝑥!
!! 𝜑!∗ 𝑥 𝜑! 𝑥 = 1  𝑖𝑓  𝑛 = 𝑚. 

(Remember? Suuuuure…there is a handout in the lecture L11 reading material online if 

you want to refresh your memory.) 

Apply these two facts to your equation in (b) and prove the formula for 𝑐!. 

 

Solution: 

a) Setting t = 0 and plugging into eq. (1) we have  

𝜓 𝑥, 𝑡 = 0 = 𝑐!𝜓!(𝑥)
!

  𝑒 ! =    𝑐!𝜓!(𝑥)
!

                                            (1𝑎) 

b) Multiplying by 𝜓!∗ (𝑥) and integrating gives 

𝜓!∗ 𝑥 𝜓 𝑥, 𝑡 = 0!
!! 𝑑𝑥 =    𝜓!∗ 𝑥 𝑐!𝜓! 𝑥

!
!! 𝑑𝑥 = 𝑐! 𝜓!∗ 𝑥!

!! 𝜓! 𝑥 𝑑𝑥  

 

= 𝑐!        ,                                                                                                                              (1𝑏) 

which is the desired result. (It doesn’t matter whether our final result contains m’s or n’s 

or any symbol known to humanity as an index, it is simply a place holder for any integer 

quantum number you choose.) We have used the linearity of integration (to pull the sum 

out of the integral) and the orthogonality of eigenfunctions as stated in part (c) (only one 

term in the sum survives, when n=m) to arrive at the answer. 



Turn in 2. Prove that the wavefunctions 

𝜓! 𝜑 = !
!!
𝑒!"#            𝑀 = 0,±1,±2,…                                                                         (2)  

are orthogonal. HINT: Look at the orthogonality condition given in question 1 part (c). 
Do the integral and clearly show what happens if 𝑁 ≠ 𝑀. 
 
Solution: We need to show that 

𝑑𝜑  𝜓!∗ 𝜑
!!

!
𝜓! 𝜑 𝑑 = 0                                                                                                      (2𝑎) 

Note the integral here is not over x from -∞ to ∞, but over angle from 0 to 2π. 
Substituting the form of the wavefunction into equation (2a) gives 
 

1
2𝜋 𝑑𝜑𝑒!!"#

!!

!
𝑒!"# =

1
2𝜋 𝑑𝜑𝑒! !!! !

!!

!
=

1
2𝜋𝑖 𝑀 − 𝑁 𝑒! !!! !

!
!!

 

 

=
1

2𝜋𝑖 𝑀 − 𝑁 𝑒!!! !!! − 1 =
1

2𝜋𝑖 𝑀 − 𝑁 1− 1 = 0                              (2𝑏) 

 
If the argument of a complex exponential is any integer multiple of 2π the result will be 
equal to 1. Prove this to yourself if it is not obvious (use Euler’s Formula). Note there is 
one exception to the above: if M=N, then 𝑒!!"#𝑒!"# =1, the integral equals 2π,  
canceling the 1/(2π) out in front – so the functions are not just orthogonal, but already 
normalized. 
 
3. Angular momentum is a vector quantity. This statement is in the book, and you heard it 
in lecture. Lets briefly explore some mathematics associated with that statement. The 
general definition of angular momentum is  

𝐿 = 𝑟  ×  𝑝        ,                                                                                                                                        (3) 
the cross product of the radial vector with the momentum vector. For example, for a 
classical electron circulating around a proton (a hydrogen atom), r would be distance 
between the proton and the electron, and p would be the momentum as the electron 
circles around the proton. 
 
Using eq. (3), prove that the magnitude of 𝐿 is mvr for a particle constrained to rotate in a 
circle in the x-y plane. To do this, write the components of 𝑟 and 𝑝 in vector form (ex: 
𝑟 = 𝑥𝚤 + 𝑦𝚥), convert to polar coordinates (e.g. x = r cos⎞), take the cross product and 
simplify.  
 
Note: There is also an easier (but much less fun) way to prove this using a separate 
definition of the cross product in terms of the magnitudes of the vectors and a trig 
function. Going either route is an acceptable proof, but it behooves you to know both.  
 
Solution: The cross product of two vectors can be obtained by writing the vectors as 
rows in a determinant (this should be familiar from your math courses): 



 
 

𝑟  ×  𝑝 =
𝚤 𝚥
𝑥 𝑦
𝑝! 𝑝!

=
𝚤 𝚥

𝑟 cos𝜑 𝑟 sin𝜑
−𝑝 sin𝜑 𝑝 cos𝜑

 

 
 

= 𝑟𝑝  cos!𝜑 + 𝑟𝑝  sin!𝜑   𝑘 = 𝑟𝑝   cos!𝜑 +   sin!𝜑   𝑘 = 𝑟𝑝  𝑘 = 𝑚𝑣𝑟  𝑘        (3𝑎) 
 
The magnitude of a vector is the square root of the sum of the squares of its components 
(that’s a mouthful) but since the angular momentum here only has a single component 
that lies on the z-axis, the magnitude is the length of this component: 
 

|𝐿| = 𝑚𝑣𝑟 ! = 𝑚𝑣𝑟                                                                                              (3𝑏) 
 
An alternate definition of the cross product is given below: 
 

𝑎  ×  𝑏 = 𝑎 𝑏 sin𝜑   𝑛                                                                                                  (3𝑐) 
 
where 𝑛 is the unit vector perpendicular to the plane of vectors 𝑎 and 𝑏. Using this 
formula we see that equation (3a) is immediately recovered since the angle between the 
radial and momentum vectors is always π/2 by definition: 
 

𝑟  ×  𝑝 = 𝑟 𝑝 sin𝜋/2   𝑘 = 𝑟𝑝 = 𝑚𝑣𝑟  𝑘                                                                        (3𝑑) 
 
From which eq. (3b) directly follows. 


