Lecture 9

Monday, September 11, 2023 10:03 AM
Molecule As a Box for Elections:
Q: Benzene, colored or transparent?

Before we fill e^{-}into the "benzene box" of $L=7{ }_{A}^{\circ}$, a few wads about Postulate 4 (spin): - Spin is an angular momentum, in $Q M$ its conjugate variable is an angle $\varphi_{S} \Rightarrow \Delta S \cdot \Delta \varphi_{S} \geq \frac{\hbar}{2}$ \& spin is quantized in integer steps e^{-}rotates CW

- $e^{-}: s=1 / 2 \Rightarrow$ quantized in $M_{s}=\frac{-1}{\frac{-1}{2}, \frac{1}{2}} e^{-}$rotates CW e rotates CCW
- $\gamma: S=1 \Rightarrow$ quantized in $M_{s}=-1,0,1$

Solve Schrödinger Eqn for "Particle in a Box" $H \psi_{n}=E_{n} \psi_{n} \Rightarrow\left(\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right) \psi_{n}=E_{n} \psi_{n}$ $\uparrow_{0} \uparrow$ inside box
$v(x)$

As we deform a spring (parabola as potential energy)
into a box, $\psi \sim e^{-a x^{2}} \rightarrow \sin (a x)$

Solution: a function equal to its $2^{\text {nd }}$ derivative that is zero $@ x=0$ \& $x=L$

$$
\frac{-\hbar^{2}}{\partial m} \frac{\partial^{2}}{\partial x^{2}} \psi_{n}(x)=E_{n} \psi_{n}(x)
$$

$$
\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \sin \left(n \pi \cdot \frac{x}{L}\right)=E_{n} \psi_{n}(x)
$$

$$
\frac{+\hbar^{2}}{2 m}\left(\frac{n^{2} \pi^{2}}{L^{2}}\right)\left(\sin \left(n \pi \frac{x}{L}\right)\right)=E_{n} \psi_{n}(x)
$$

$$
\hbar=\frac{h}{2 \pi}
$$

$$
E_{n}=\frac{h^{2} n^{2}}{8 n L^{2}}
$$

box

