Lecture 12
Last Time: Quantum Superposition
ex: atomic orbitals

$$
\begin{aligned}
& p_{t}=P_{-}^{e^{e-}}=0_{0}^{e^{-}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ex: bonding and antibonding superpositions }
\end{aligned}
$$

Toddy: move bonding and antibouding
"if 2 e:genstates have sum (similar) energy, then any linear combination (e, $\mid s_{A} \pm i s_{B}, p+ \pm p_{-}$) is also an (approximate) eigenstake
ex: non-symmetric bonding Li-H

$$
\sigma \sim 2 s\left(L_{i}\right)+7.4 .1 s(H)
$$

Why is bonding explained by QM and not CM?

forbidden
region
blt the molecules

Spectroscopy $=$ excite the electron in $\mathrm{H}_{2}{ }^{+}$molecules

Other atomic orbitals can do bonding antibonding combination $=$ superposition as well

